Increased Preclinical Activity by KEAP1/NRF2 mutations are associated with enhanced sensitivity to telaglenastat.

BACKGROUND

- Mutational activation of the KEAP1-NRF2 pathway occurs in >20% of NSCLC patients.
- In non-squamous NSCLC patients receiving standard-of-care (SOC; pembrolizumab/platinum/pemetrexed), KEAP1 mutations were associated with poor outcomes (median OS: 7.8 vs. 20.4 months for KEAP1+, P=0.0021).
- KEAP1/NRF2 activation protects tumors from oxidative stress and promotes tumor growth/survival (Fig. 1).
- Upregulated NRF2 in these tumors results in increased dependence on glutamine (GLS) conversion of glutamate to glutathione due to expression of genes required for glutathione metabolism and transport.

RATIONALE FOR TELAGLENASTAT IN KEAP1/NRF2-MUTATED NSCLC

- Telaglenastat is an investigational, first-in-class, potent, oral GLS inhibitor that has shown encouraging efficacy and activity in several cancers when combined with targeted agents, checkpoint inhibitors, and chemotherapy.

Methods

- Telaglenastat is active against many NSCLC cell lines, particularly those bearing KEAP1 or NRF2 mutations (Fig. 2A), selectively inhibits KEAP1+ tumor growth in vivo (Fig. 2B), and synergizes with anti-PD-1 inhibition.

Figure 1. KEAP1/NRF2 mutations are associated with enhanced sensitivity to telaglenastat.

Figure 2. KEAP1/NRF2 mutations are associated with enhanced sensitivity to telaglenastat

Figure 3. KEAPSAKE Study Design

KEY ELIGIBILITY CRITERIA

<table>
<thead>
<tr>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening</td>
<td>Screening</td>
</tr>
<tr>
<td>• Documented histological or cytological diagnosis of nonsquamous NSCLC</td>
<td>• Squamous cell histology and mixed histology tumors with any small cell component</td>
</tr>
<tr>
<td>• Stage IV (M1a, M1b, M1c) disease not previously treated with systemic therapy for metastatic NSCLC</td>
<td>• Active concomitant disease requiring systemic treatment in last 2 years and/or history of significant untreated disease within past 3 years</td>
</tr>
<tr>
<td>• ECOG PS 0-1</td>
<td>• Radiation therapy to the lung >30 Gy within 6 months of randomization</td>
</tr>
<tr>
<td>• No known actionable mutation in EGFR, ALK, ROS1, BRAF, NTRK, or other known actionable mutation for which there is approved therapy</td>
<td>• Concurrent chronic systemic steroid use (>10 mg equivalent of prednisone) or other immunosuppressive drug</td>
</tr>
<tr>
<td>• Measurable disease (RECIST v1.1)</td>
<td>• Pump inhibitor (mechanism) within 3 days of randomization</td>
</tr>
<tr>
<td>• Enroll in KEAP1 or NRF2 mutations from a COP-accredited and/or CLIA-certified laboratory and STK11/LKB1 mutation status is known for the purpose of stratification</td>
<td>• Major surgery within 3 weeks or 2 days before withdrawal of SOC therapy</td>
</tr>
<tr>
<td>• Adequate hepatic, renal, cardiac, and hematologic function</td>
<td>• Prior severe hypersensitivity reaction to other monoclonal antibody</td>
</tr>
<tr>
<td>• No history of other malignancy (other than nonmelanoma skin cancer)</td>
<td>• Active and/or untreated CMS metastasis</td>
</tr>
</tbody>
</table>

SUMMARY

- Telaglenastat is an investigational, first-to-class, potent, oral inhibitor of glutaminase (GLS, responsible for controlling glutamine utilization) that has shown encouraging activity and manageable tolerability across many cancer types in combination with multiple agents.
- KEAP1 mutations are associated with reduced survival and poor outcomes in patients with nonsquamous NSCLC treated with standard-of-care therapy
- The KEAPSAKE Study is a randomized controlled phase 2 clinical trial
 - Telaglenastat (or placebo) in combination with pembrolizumab, carboplatin, and pemetrexed
 - First-line therapy for patients with KEAP1- or NRF2 mutated, non-squamous metastatic NSCLC
- Primary endpoint: Safety and Investigator-assessed PFS
- Study will open to enrollment in July 2020

**Findings of this novel NGS biomarker-selected study will inform the efficacy and safety profile of telaglenastat + standard-of-care chemoimmunotherapy for 1L treatment of metastatic KEAP1/NRF2-mutated, non-squamous NSCLC

REFERENCES:

ACKNOWLEDGMENTS: We thank the patients and families for their contributions, and coordination for participation in the study. The authors thank Calithera Biosciences for financial support.