CB-839, a selective glutaminase inhibitor, synergizes with signaling pathway inhibitors to produce an anti-tumor effect in cell lines and tumor xenografts

Francesco Parlati, Ph.D.
Calithera Biosciences
South San Francisco, California
I have the following financial relationships to disclose:
Stockholder in Calithera Biosciences
Employee of Calithera Biosciences

I will not discuss off label use and/or investigational use in my presentation.
Tumor Cells Have Increased Glutamine and Glucose Consumption

Normal Cell

- Lactate
- GLUCOSE
- Pyruvate
- Energy
- TCA Cycle
- α-KG
- Glutamate
- Glutaminase
- GLUTAMINE

Tumor Cell

- Lactate
- GLUCOSE
- Pyruvate
- Energy
- TCA Cycle
- α-KG
- Glutamate
- Glutaminase
- GLUTAMINE

Building Blocks for Cell Growth

CB-839
CB-839 Suppresses Metabolic Pathways Downstream of Glutamate

NSCLC cell lines
CB-839 (1 µM)
Timepoint: 24 h

Glutaminase

Glutamine
Glutamate
α-ketoglutarate (α-KG)
Fumarate
Malate
Citrate
Oxaloacetate
Aspartate
Glutathione

Fold Change in Metabolite

0.0625
0.125
0.25
0.5
1
2
4
8
16
Glutamate
GSH
Malate
Citrate
Aspartate

0.0625
0.125
0.25
0.5
1
2
4
8
16
Glutamine
Glutamate
GSH
Malate
Citrate
Aspartate
CB-839 Has Anti-Proliferative Activity in Multiple Cancer Types

Cell Growth (% control)

Cell Death (% plated)

Breast

<table>
<thead>
<tr>
<th>Triple-negative</th>
<th>ER+ or Her2+</th>
<th>non-RCC</th>
</tr>
</thead>
</table>

Kidney

<table>
<thead>
<tr>
<th>RCC</th>
<th>NSCLC</th>
<th>Mesothelioma</th>
<th>Myeloma</th>
<th>Lymphoma</th>
</tr>
</thead>
</table>

Cell Line

<table>
<thead>
<tr>
<th>Cell Death (% plated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-100</td>
</tr>
</tbody>
</table>

1 µM CB-839
72 h Treatment
Renal Clear Cell Carcinoma Cells are Sensitive to Glutaminase Inhibition

![Graph showing cell growth and death of various renal cell carcinoma and kidney tumor cell lines after 72 h treatment with 1 μM CB-839.](graph_image)

- **Cell Growth (% control)**
- **Cell Death (% plated)**

- **Renal Clear Cell Carcinoma**
- **Kidney Tumor (non-RCC)**

1 μM CB-839
72 h Treatment
Cross Talk Between Signal Transduction Pathways and Cancer Metabolism

Growth Factor Receptor

Ras/Raf Pathway

PI3K/mTOR Pathway

↑ Glutamine Utilization

↑ Glucose Utilization

CB-839
MTOR Signaling is Downregulated by CB-839 in Sensitive RCC Cells

<table>
<thead>
<tr>
<th></th>
<th>Sensitive Cells</th>
<th>Resistant Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TUH-10TK8</td>
<td>JMU-RTK2</td>
</tr>
<tr>
<td></td>
<td>A704</td>
<td>ACHN</td>
</tr>
<tr>
<td></td>
<td>786-O</td>
<td>RCC-ER</td>
</tr>
<tr>
<td></td>
<td>Caki-1</td>
<td>G402</td>
</tr>
<tr>
<td></td>
<td>A498</td>
<td>G401</td>
</tr>
<tr>
<td></td>
<td>786-P</td>
<td>BFTC-909</td>
</tr>
<tr>
<td>(-)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(+) CB-839</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>phospho S6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Ser240/244)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>total S6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Renal Cell Carcinoma

Kidney Tumor (non-RCC)

\[p = 0.026^* \]
MTOR Signaling is Downregulated by CB-839 in Sensitive RCC Cells

<table>
<thead>
<tr>
<th>Sensitive Cells</th>
<th>Resistant Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUHR10TK8</td>
<td>JMU-RTK2</td>
</tr>
<tr>
<td>A704</td>
<td>ACHN</td>
</tr>
<tr>
<td>786-O</td>
<td>RCC-ER</td>
</tr>
<tr>
<td>Caki-1</td>
<td>G402</td>
</tr>
<tr>
<td>A498</td>
<td>G401</td>
</tr>
<tr>
<td>786-P</td>
<td>BFTC-909</td>
</tr>
</tbody>
</table>

CB-839 (1 μM; 24h)

-0.8
-0.6
-0.4
-0.2
0.0

Δ phospho 4E-BP11 (normalized A.U.)

Sensitive Resistant

p = 0.04*

Renal Cell Carcinoma
Kidney Tumor (non-RCC)
Cross Talk Between Signal Transduction Pathways and Cancer Metabolism

Growth Factor Receptor

Ras/Raf Pathway

PI3K/mTOR Pathway

↓ Glutamine Utilization

↑ Glucose Utilization

Everolimus (mTOR inhibitor)

CB-839
Synergistic Anti-Proliferative Activity of CB-839 and Everolimus in Renal Clear Cell Carcinoma Cells

Cell Survival (relative to DMSO)

- **ACHN**

<table>
<thead>
<tr>
<th>CB-839 (nM)</th>
<th>Everolimus (nM)</th>
<th>Mixture (Comb. Index)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>100</td>
<td>0.38</td>
</tr>
<tr>
<td>150</td>
<td>50</td>
<td>0.33</td>
</tr>
<tr>
<td>75</td>
<td>25</td>
<td>0.20</td>
</tr>
<tr>
<td>37.5</td>
<td>3.1</td>
<td>0.36</td>
</tr>
<tr>
<td>18.8</td>
<td>1.6</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Plating Density

- **4h Treatment**

Glucose Consumption

<table>
<thead>
<tr>
<th>24 h Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrient Consumption (relative to DMSO)</td>
</tr>
<tr>
<td>0.0</td>
</tr>
</tbody>
</table>

Glutamine Consumption

<table>
<thead>
<tr>
<th>24 h Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrient Consumption (relative to DMSO)</td>
</tr>
<tr>
<td>0.0</td>
</tr>
</tbody>
</table>

Extracellular Acidification Rate

<table>
<thead>
<tr>
<th>24 h Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline ECAR (relative to DMSO)</td>
</tr>
<tr>
<td>0.0</td>
</tr>
</tbody>
</table>

Oxygen Consumption Rate

<table>
<thead>
<tr>
<th>24 h Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline OCR (relative to DMSO)</td>
</tr>
<tr>
<td>0.0</td>
</tr>
</tbody>
</table>

phospho 4E-BP1 (Ser65)

- **4h Treatment**
Anti-Proliferative Activity of CB-839 in NSCLC

Cell Growth (% control)

Cell Death (% plated)

Sensitive

Resistant

1 μM CB-839
72 h Treatment
KRAS and EGFR Mutated Tumor Cells are More Sensitive to Glutaminase Inhibition with CB-839

Correlation Between CB-839 Sensitivity & KRAS/EGFR Status

<table>
<thead>
<tr>
<th>Test</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-square</td>
<td>0.005**</td>
</tr>
<tr>
<td>t test</td>
<td>0.026*</td>
</tr>
</tbody>
</table>

1 µM CB-839
72 h Treatment
Cross Talk Between Signal Transduction Pathways and Cancer Metabolism

Growth Factor Receptor

Ras/Raf Pathway

PI3K/mTOR Pathway

↑ Glutamine Utilization

↑ Glucose Utilization

Erlotinib (EGFR inhibitor)

Selumetinib (Mek inhibitor)

CB-839
CB-839 is Synergistic with Selumetinib in KRAS^{mut} Cells

Glucose Consumption
- CB-839
- Selumetinib
- Combo

Glutamine Consumption
- DMSO
- CB-839
- Selumetinib
- Combo

Malate
- DMSO
- CB-839
- Selumetinib
- Combo

GSH
- DMSO
- CB-839
- Selumetinib
- Combo

Cell Survival (relative to DMSO)
- 100
- 50
- 25
- 12.5
- 6.25
- CB-839 (nM)
- 1000
- 500
- 250
- 125
- 62.5
- Selumetinib (nM)
- 0.30
- 0.25
- 0.40
- 0.56
- 0.41
- Mixture (Comb. Index)

H2122 Xenograft
- Vehicle
- CB-839 TGI=46%
- Selumetinib TGI=49%
- Combo TGI=78%

*** vs. CB-839
**** vs. Selumetinib
** vs. CB-839
*** vs. Selumetinib

Tumor Volume (mm^3)
- 0
- 500
- 1000
- 1500

Days Post-Implant
- 5
- 10
- 15
- 20
- 25

Plating Density
- 72 h Treatment

CB-839 is Synergistic with Selumetinib in KRAS^{mut} Cells
CB-839 is Synergistic with Erlotinib in EGFR^{mut} Cells

CB-839 is Synergistic with Erlotinib in EGFR^{mut} Cells

Cell Survival
(relative to DMSO)

<table>
<thead>
<tr>
<th>HCC827 Plating Density</th>
<th>CB-839 (nM)</th>
<th>Erlotinib (nM)</th>
<th>Mixture (Comb. Index)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 500 300 100 100</td>
<td>25 12.5</td>
<td>12.5 6.25 3.125</td>
<td>0.67 0.45 0.43 0.44 0.81</td>
</tr>
</tbody>
</table>

Glucose Consumption
(relative to DMSO)

<table>
<thead>
<tr>
<th>24 h Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrient Consumption</td>
</tr>
<tr>
<td>DMSO</td>
</tr>
<tr>
<td>1.00</td>
</tr>
</tbody>
</table>

Glutamine Consumption
(relative to DMSO)

<table>
<thead>
<tr>
<th>24 h Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrient Consumption</td>
</tr>
<tr>
<td>DMSO</td>
</tr>
<tr>
<td>1.00</td>
</tr>
</tbody>
</table>

Malate
(relative to DMSO)

<table>
<thead>
<tr>
<th>24 h Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrient Consumption</td>
</tr>
<tr>
<td>DMSO</td>
</tr>
<tr>
<td>1.00</td>
</tr>
</tbody>
</table>

GSH
(relative to DMSO)

<table>
<thead>
<tr>
<th>24 h Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrient Consumption</td>
</tr>
<tr>
<td>DMSO</td>
</tr>
<tr>
<td>1.00</td>
</tr>
</tbody>
</table>
CB-839 Enhances the Anti-Tumor Effect of Erlotinib in an Erlotinib Resistant Model

H1650 Xenograft

- **Tumor Volume (mm³)**
 - **Vehicle**
 - **CB-839**
 - **Erlotinib**
 - **Combo**

- **Dosing Start**
- **TGI = 26% n.s.**
- **TGI = 66%***
- **TR = 11%****
- **P < 0.001***

Cell Survival (relative to DMSO)

- **H1650**
- **72 h Treatment**

- **Plating Density**
- **62.5** 62.5 62.5 62.5 62.5 CB-839 (nM)
- **5,000** 2,500 1000 500 250 Erlotinib (nM)
- **0.23** 0.27 0.43 0.39 0.46 Mixture (Comb. Index)

Cellular Metabolite (relative to DMSO)

- **Malate**
- **24 h Treatment**

- **GSH**

Tumor Volume (mm³)

- **Vehicle**
- **CB-839**
- **Erlotinib**
- **Combo**

Dosing Start

TGI = 26% n.s.

TGI = 66%*

TR = 11%**

P < 0.001*
Conclusions

• CB-839 is anti-proliferative in multiple tumor types and suppresses mTOR pathway signaling

• Clear cell RCC lines are sensitive to CB-839

• KRAS and EGFR mutant NSCLC lines show enhanced sensitivity to CB-839

• CB-839 in combination with signal transduction inhibition offers a novel therapeutic strategy for the treatment of cancer:
 – Everolimus in RCC
 – Mek inhibitor in KRAS mutant NSCLC
 – EGFR inhibitor in EGFR mutant NSCLC
Acknowledgements

Biology
Francesco Parlati
Mirna Rodriguez
Melissa Works
Andy MacKinnon
Winter Zhang
Ethan Emberley
Susanne Steggerda
Alison Pan
Susan Demo

Pharmacology
Matthew Gross
Julie Janes

Chemistry
Jim Li
Guy Laidig
Lijing Chen
Tim Stanton

DMPK
Weiqun Le
Tracy Wang
Jing Zhang
Frances Zhou

Clinical
Keith Orford

Pharm. Dev.
Evan Lewis
Peter Shwoenek

Scientific
Management Team
Susan Molineaux
Mark Bennett
Eric Sjogren
Chris Molineaux