CX-1158-101: A First-in-Human Phase 1 Study of CB-1158, a Small Molecule Inhibitor of Arginase, as Monotherapy and in Combination with an anti-PD-1 Checkpoint Inhibitor in Patients with Solid Tumors

Kyriakos Papadopoulos¹, Frank Tsai², Todd Bauer³, Lucas Muigai⁴, Yu Liang⁴, Mark Bennett⁴, Keith Orford⁴, Siqing Fu⁵

¹South Texas Accelerated Research Therapeutics (START), San Antonio, TX; ²Pinnacle Oncology Hematology, Phoenix, AZ; ³Sarah Cannon Research Institute/Tennessee Oncology, PLLC., Nashville, TN, ⁴Calithera Biosciences, South San Francisco, CA; ⁵MD Anderson Cancer Center, Houston, TX
Immunosuppression in the Tumor Microenvironment

• Despite the important advances in immunotherapy, a limited number of patients derive significant benefit from checkpoint inhibitors.

• Tumor-infiltrating myeloid cells suppress T-cell and NK cell function and can limit the activity of checkpoint inhibitors.

• Arginase is a key immunosuppressive enzyme secreted by tumor-infiltrating myeloid cells.

• Inhibiting arginase offers a novel strategy to relieve immunosuppression and to enhance checkpoint inhibitor activity.

• CB-1158 is a first-in-class oral arginase inhibitor in a Phase 1 clinical study.
Arginase in Cancer Patients

Arginase-positive myeloid cell infiltrate in tumor tissues

Plasma Arginase

Plasma Arginine

High arginase and low arginine in patient plasma
Arginase-Mediated Immune Suppression in Tumor Microenvironment

Arginase is required for proliferation of activated CD8+ T-cells

Arginase depletes arginine in tumor

MDSC/Neutrophil → Arginase → Low Arginine

T-cell/NK cell
↓ proliferation
↓ TCRζ
↓ IFNγ
CB-1158 Inhibits Arginase and Overcomes T-cell Suppression

CB-1158 inhibits Arginase and overcomes T-cell suppression.

- **Arginase inhibition** increases arginine.

<table>
<thead>
<tr>
<th>Arginase Assay</th>
<th>CB-1158 IC<sub>50</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arginase 1 (recombinant)</td>
<td>98 nM</td>
</tr>
<tr>
<td>Reversal of neutrophil-mediated T-cell suppression</td>
<td>200 nM</td>
</tr>
</tbody>
</table>

MDSC/Neutrophil → Arginase → **High Arginine** → T-cell/NK cell

↑ proliferation

↑ TCRζ

↑ IFNγ
CB-1158 Has Single Agent and Combination Activity in Syngeneic Tumor Models

Increased plasma and tumor arginine

Plasma

<table>
<thead>
<tr>
<th>Arginine (µM)</th>
<th>Vehicle</th>
<th>CB-1158 (100 mg/kg single dose)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>400</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>200</td>
<td>300</td>
<td>400</td>
</tr>
</tbody>
</table>

Tumor (LLC)

<table>
<thead>
<tr>
<th>Arginine (mmol/g)</th>
<th>Vehicle</th>
<th>CB-1158 (100 mg/kg single dose)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>200</td>
<td>300</td>
<td>400</td>
</tr>
</tbody>
</table>

Monotherapy anti-tumor activity

LLC (Lung)

- **Vehicle**
- **CB-1158** 100 mg/kg BID

Increased CD8+ TILs

CT26 (Colon)

- **Vehicle**
- **CB-1158**
- **α-PD-L1**
- **CB-1158 + α-PD-L1**

Combination anti-tumor activity with checkpoint inhibitor

Tumor Volume (mm³)

Days Post Implant

- **Vehicle**
- **CB-1158**
- **α-PD-L1**
- **CB-1158 + α-PD-L1**
CX-1158-101 Phase 1 Study Objectives

• Primary
 – Evaluate the safety and tolerability of CB-1158 in patients with advanced/metastatic and/or treatment-refractory solid tumors
 • Monotherapy
 • Combination with anti-PD-1 therapy

• Secondary
 – Select the recommended Phase 2 dose (RP2D) of CB-1158
 • Monotherapy
 • Combination with anti-PD-1 therapy
 – Determine the PK of CB-1158
 – Evaluate the anti-tumor effect of CB-1158

• Exploratory
 – Evaluate the pharmacodynamic effects of CB-1158 and identify potential biomarkers
CX-1158-101 Phase 1 Study Design

Dose Escalation

- **Monotherapy**
 - All-comer patients with advanced/metastatic solid tumors
 - 3+3 design*
 - PO dosing, BID schedule

- **Anti-PD-1 Combination Therapy**
 - Combo with full dose α-PD-1
 - NSCLC, RCC, melanoma

Dose Expansion Cohorts

- NSCLC
- CRC
- SCCHN, RCC, Gastric, Bladder, Melanoma

- Prior α-PD-1/PD-L1 therapy
 - NSCLC
 - Melanoma

 Additional naïve and α-PD-1/α-PD-L1 refractory tumor types under consideration

*Additional patients enrolled into cleared dose levels for biomarker assessments
CX-1158-101 Phase 1 Patient Selection

Inclusion:
- Age ≥18
- ECOG PS 0-1
- Adequate renal, hepatic and hematologic function
- Prior PD1/PDL-1 allowed.

Exclusion:
- Immunosuppression pred > 10 mg
- Autoimmune disease
- Valproic acid and xanthine oxidase inhibitors

Dose Levels
- 600 mg
- 500 mg
- 400 mg
- 300 mg
- 225 mg
- 150 mg
- 100 mg
- 50 mg
CX-1158-101 Phase 1 Study Assessments

• Safety
 – Standard adverse event (CTCAE) and laboratory monitoring
 – Markers of urea cycle inhibition (plasma ammonia, BUN)

• PK, pharmacodynamics and biomarkers
 – Plasma drug concentration
 – Plasma arginine and arginase activity
 – Arginase expression and immune modulation in the periphery and tumor
 – Urinary orotic acid

• Tumor response
 – Standard RECIST and immune-related RECIST criteria
Urinary Orotic Acid is a Sensitive Biomarker to Monitor Urea Cycle Inhibition

- Arginase is also a urea cycle enzyme
 - “Sequestered” location in hepatocytes
 - Therapeutic window observed in preclinical species
- Urinary orotic acid is a highly sensitive biomarker of urea cycle function
- Urinary orotic acid is being measured in this Phase 1 study
 - Elevations above 5x ULN triggers further evaluation of that dose level

Table: Arginase Function and CB-1158 IC\textsubscript{50}

<table>
<thead>
<tr>
<th>Arginase Function</th>
<th>CB-1158 IC\textsubscript{50}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunosuppression</td>
<td>0.2 µM</td>
</tr>
<tr>
<td>Urea cycle</td>
<td>260 µM</td>
</tr>
</tbody>
</table>

Graph: Urinary orotic acid (µmol/mmol Cr)

- Inherited urea cycle defect (severe symptoms, elevated ammonia)
- Healthy carriers of urea cycle defect (no clinical impact, normal ammonia)
Study Demographics

<table>
<thead>
<tr>
<th>Baseline Characteristics</th>
<th>N=17*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age [median (range)]</td>
<td>61 (49-77)</td>
</tr>
<tr>
<td>Female/Male [N (%)]</td>
<td>12 (71)/5 (29)</td>
</tr>
<tr>
<td>CB-1158 Dose [N]</td>
<td></td>
</tr>
<tr>
<td>50 mg BID</td>
<td>8^</td>
</tr>
<tr>
<td>100 mg BID</td>
<td>6</td>
</tr>
<tr>
<td>150 mg BID</td>
<td>3</td>
</tr>
<tr>
<td>Prior systemic regimens</td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>4 (1-11)</td>
</tr>
<tr>
<td>Prior α-PD-1/α-PD-L1 [N (%)]</td>
<td>5 (29)</td>
</tr>
<tr>
<td>ECOG [N (%)]</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2 (12)</td>
</tr>
<tr>
<td>1</td>
<td>15 (88)</td>
</tr>
</tbody>
</table>

*Data cut: April 24, 2017

^Additional patients enrolled for biomarker assessments
Time on Study

17 patients enrolled with 7 ongoing*

*Data cut: April 24, 2017
Safety: Treatment-Related Events

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Total [N (%)]</th>
<th>≥Grade 3 [N (%)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with Any AE</td>
<td>3 (18)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Anemia</td>
<td>1 (5.9)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>1 (5.9)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Increased AST</td>
<td>1 (5.9)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Myalgia</td>
<td>1 (5.9)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

- No drug-related SAEs
- Reversible elevations of urinary orotic acid above 5X ULN threshold at 150 mg dose level (2 of 3 patients)
 - Patients asymptomatic without other evidence of urea cycle inhibition
 - Levels comparable to healthy heterozygous carriers for urea cycle defects
 - Additional evaluation of 150 mg dose level ongoing

Data cut: April 24, 2017
Pharmacokinetics

<table>
<thead>
<tr>
<th>Cohort (N)</th>
<th>$T_{1/2}$ (C1D1) (hr)</th>
<th>C_{max} (C1D15) (µM)</th>
<th>C_{min} (C1D15) (µM)</th>
<th>AUC_{t} (C1D15) (µM*hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 mg BID (5^)</td>
<td>6.2 ± 1.0</td>
<td>3.3 ± 0.5</td>
<td>1.6 ± 0.6</td>
<td>30.2 ± 6.5</td>
</tr>
<tr>
<td>100 mg BID (6^)</td>
<td>6.0 ± 0.6</td>
<td>8.4 ± 1.4</td>
<td>4.1 ± 0.5</td>
<td>80.6 ± 12.2</td>
</tr>
<tr>
<td>150 mg BID (3)</td>
<td>5.0 ± 0.5</td>
<td>9.9 ± 2.4</td>
<td>4.4 ± 0.8</td>
<td>85.5 ± 7.6</td>
</tr>
</tbody>
</table>

^N=4 for steady state values on C1D15
Pharmacokinetics

<table>
<thead>
<tr>
<th>Cohort (N)</th>
<th>(T_{1/2}) (C1D1) (hr)</th>
<th>(C_{\text{max}}) (C1D15) (µM)</th>
<th>(C_{\text{min}}) (C1D15) (µM)</th>
<th>(\text{AUC}_t) (C1D15) (µM*hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 mg BID (5(^\wedge))</td>
<td>6.2 ± 1.0</td>
<td>3.3 ± 0.5</td>
<td>1.6 ± 0.6</td>
<td>30.2 ± 6.5</td>
</tr>
<tr>
<td>100 mg BID (6(^\wedge))</td>
<td>6.0 ± 0.6</td>
<td>8.4 ± 1.4</td>
<td>4.1 ± 0.5</td>
<td>80.6 ± 12.2</td>
</tr>
<tr>
<td>150 mg BID (3)</td>
<td>5.0 ± 0.5</td>
<td>9.9 ± 2.4</td>
<td>4.4 ± 0.8</td>
<td>85.5 ± 7.6</td>
</tr>
</tbody>
</table>

\(^{\wedge}N=4\) for steady state values on C1D15

- Six hour half-life:
 - Supports BID dose schedule
 - Consistent with renal clearance predicted from preclinical studies
Pharmacokinetics

<table>
<thead>
<tr>
<th>Cohort (N)</th>
<th>T_{1/2} (C1D1) (hr)</th>
<th>C_{max} (C1D15) (µM)</th>
<th>C_{min} (C1D15) (µM)</th>
<th>AUC_{t} (C1D15) (µM*hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 mg BID (5(^\wedge))</td>
<td>6.2 ± 1.0</td>
<td>3.3 ± 0.5</td>
<td>1.6 ± 0.6</td>
<td>30.2 ± 6.5</td>
</tr>
<tr>
<td>100 mg BID (6(^\wedge))</td>
<td>6.0 ± 0.6</td>
<td>8.4 ± 1.4</td>
<td>4.1 ± 0.5</td>
<td>80.6 ± 12.2</td>
</tr>
<tr>
<td>150 mg BID (3)</td>
<td>5.0 ± 0.5</td>
<td>9.9 ± 2.4</td>
<td>4.4 ± 0.8</td>
<td>85.5 ± 7.6</td>
</tr>
</tbody>
</table>

\(^\wedge\)N=4 for steady state values on C1D15

- Steady state trough levels above the IC_{90} for arginase inhibition at all dose levels
CB-1158 Inhibits Arginase in Patient Plasma

Pre-dose Plasma Arginase

Post-dose Plasma Arginase Activity

Arginase Activity (μM \text{13C-ornithine/h})

C1D1 pre-dose
C1D1 6 hr post-dose
C1D15 pre-dose

peak
steady state trough

95% inhibition (N=11)
90% inhibition (N=7)

50 mg
100 mg

0.0 0.5 1.0 1.5 2.0

Healthy Donors Patients on study (pre-dose)
CB-1158 Increases Arginine in Patient Plasma

Pre-dose Plasma Arginine

Post-dose Plasma Arginine

Arginine Levels

Arginine (fold change)

Healthy Donors Patients on study (pre-dose)

Arginine (μM)

0 25 50 75 100 125 150

50 mg 100 mg 150 mg

C1D1 C1D15

1 2 3 4 5 6 7

1.5X
Immune Biomarkers: Peripheral Blood

Increased PD-1\(^+\) T-cells

- **CD4\(^+\)/FoxP3\(^-\)**
 - C1D1
 - C2D1
 - *\(p<0.05\)

- **CD8\(^+\)**
 - C1D1
 - C2D1
 - *\(p<0.05\)

Increased CD3\(\zeta\) on cytokine-producing NK cells

- C1D1
- C2D1
- *\(p<0.05\)

Sub-populations and activation state of T-cells and NK cells by flow cytometry
Conclusions

• CB-1158 is a first-in-class, potent, selective arginase inhibitor
• Oral dosing of CB1158 was well tolerated at all doses tested
• Steady state trough exposure >IC$_{90}$ for arginase, with 90-95% arginase inhibition and increases in plasma arginine
• Preliminary evidence of peripheral immune modulation - to be further explored
• Ongoing Phase 1 study will continue to explore monotherapy as well as the combination with anti-PD-1 therapy in a variety of solid tumor indications
Acknowledgements

Fellow Investigators and their Institutions
Frank Tsai, M.D., Pinnacle Oncology Hematology
Todd Bauer, M.D., Sarah Cannon Research Institute/Tennessee Oncology
Siqing Fu, M.D., Ph.D., MD Anderson Cancer Center

Calithera Collaborators
Keith Orford M.D, Ph.D.
Lucas Muigai, M.S.
Thomas Sidders, B.S.
Yonchu Jenkins, Ph.D.
Mark Bennett Ph.D.

Incyte Collaborators
Sven Gogov, M.D.
Howard Kallender, Ph.D.

Thank you to our patients and their families for participating in this study